Hierbei wird eine Solltrajektorie konstruiert und die Lagegrößen des Roboters, also Position und Orientierung, auf diese Solltrajektorie geregelt. Die Regelung erfolgt im Folgenden mit einem PD-Regler, da das integrale I-Glied durch die Addierung der differentiellen Bewegungen bereits mitbeinhalten ist und die Fehler der Lagegrößen sich summieren. Ein typischer Regelkreis sieht wie in der Abbildung 1 aus.

Rendered by QuickLaTeX.com

Abbildung 1: Standardregelkreis

Das Diagramm stellt einen typischen Regelkreis mit Rückführung dar. Hierbei stellt der Regler anhand der Einganggröße Regelabweichung e(t) die Stellgröße u(t). Hierbei ist die Regelgröße die IST-Position des Roboters

(1)   \begin{equation*} \mathbf{y}(t)=\begin{bmatrix} r_1^G\\r_2^G\\\gamma^G \end{bmatrix} \end{equation*}

und die Führungsgröße die Soll-Position, also die Soll-Trajektorie

(2)   \begin{equation*} \mathbf{w}(t)=\begin{bmatrix} \bar{r}_1^G\\\bar{r}_2^G\\\bar{\gamma}^G \end{bmatrix}\text{,} \end{equation*}

die der Roboter nachfahren muss. Daraus ergibt sich der Messfehler

(3)   \begin{equation*} \mathbf{e}(t)=\mathbf{w}(t)-\mathbf{y}(t)\text{.} \end{equation*}

Die Regelgleichung des idealen PD-Reglers im Zeitbereich kann dann als

(4)   \begin{equation*} \mathbf{u}(t)=\mathbf{K}_P^T[\mathbf{e}(t)+\mathbf{T}_V\frac{d}{dt}\mathbf{e}(t)] \end{equation*}

formuliert werden, wobei der Vektor \mathbf{K}_P der Verstärkungsvektor und der \mathbf{T}_V die Zeitkonstante ist, die das D-Glied parametrisiert. Die Stellgrößen, die hierbei eingestellt werden, sind die Spannungen der beiden Motoren

(5)   \begin{equation*} \mathbf{u}(t)=\begin{bmatrix} V_{RR}\\V_{RL}\text{.} \end{bmatrix} \end{equation*}

Der ideale PD-Regler genügt hierbei nicht ganz den Anforderungen, da das reale System sowohl software- als auch hardwareseitige Verzögerungen aufweist. Wenn man ein PT-Glied in den PD-Regler integriert, erhält man

(6)   \begin{equation*} \mathbf{T}_1\frac{d}{dt}\mathbf{u}(t)+\mathbf{u}(t)=\mathbf{K}_P^T[\mathbf{e}(t)+\mathbf{T}_V\frac{d}{dt}\mathbf{e}(t)]\text{,} \end{equation*}

wobei die Matrix \mathbf{T}_1 für die Verzögerungszeitkonstante steht. Die Bewegungsgleichungen des Roboters lassen sich i.a. als

(7)   \begin{equation*} \mathbf{M}\ddot{\mathbf{y}}(t)+\mathbf{D}\dot{\mathbf{y}}(t)+\mathbf{K}\mathbf{y}(t)=\mathbf{F}(t) \end{equation*}

schreiben, wobei \mathbf{M} die Massenmatrix, \mathbf{D} die Dämpfungsmatrix, \mathbf{K} Steifigkeitsmatrix und \mathbf{F}(t) die Matrix der äußeren Kräfte sind. Um die Bewegungsgleichungen als differentielle Gleichungen ersten Grades zu beschreiben, werden diese im Zustandraum dargestellt. Die Zustandsgleichung lautet i.a.

(8)   \begin{equation*} \mathbf{A}\dot{\underline{\mathbf{x}}}+\mathbf{B}\underline{{\mathbf{x}}}=\underline{\mathbf{p}}(t)\text{.} \end{equation*}

Mit dem Zustandvektor

(9)   \begin{equation*} \underline{{\mathbf{x}}}(t)=\begin{bmatrix} \mathbf{y}\\ \dot{\mathbf{y}} \end{bmatrix} \end{equation*}

und dem erweiterten Kraftvektor

(10)   \begin{equation*} \underline{{\mathbf{p}}}(t)=\begin{bmatrix} \mathbf{F}(t)\\ \mathbf{0} \end{bmatrix} \end{equation*}

lassen sich die Systemmatrix A als

(11)   \begin{equation*} \mathbf{A}=\begin{bmatrix} \mathbf{D}& \mathbf{M}\\ \mathbf{M}& \mathbf{0} \end{bmatrix} \end{equation*}

und die Eingangsmatrix \mathbf{B} als

(12)   \begin{equation*} \mathbf{B}=\begin{bmatrix} \mathbf{K}& \mathbf{0}\\ \mathbf{0}& \mathbf{-M} \end{bmatrix} \end{equation*}

formulieren. Im konkreten Fall des Roboters bietet sich die Vereinfachung an, bei der Ermittlung der Massenmatrix die Form als Zylinder anzunehmen. Die Dämpfungsmatrix, sowie die Steifigkeitsmatrix wurden emprisch ermittelt.

Ausblick: Die Parameteroptimierung für den Regler wurde noch nicht methodisch durchgeführt und ist ein anstehender Punkt im Roadmap.